Exploratory Item Classification Via Spectral Graph Clustering

نویسندگان

  • Yunxiao Chen
  • Xiaoou Li
  • Jingchen Liu
  • Gongjun Xu
  • Zhiliang Ying
چکیده

Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graph-Theoretic Clustering Algorithm based on the Regularity Lemma and Strategies to Exploit Clustering for Prediction

The fact that clustering is perhaps the most used technique for exploratory data analysis is only a semaphore that underlines its fundamental importance. The general problem statement that broadly describes clustering as the identification and classification of patterns into coherent groups also implicitly indicates it’s utility in other tasks such as supervised learning. In the past decade and...

متن کامل

Semi-supervised Spectral Clustering for Classification

We propose a Classification Via Clustering (CVC) algorithm which enables existing clustering methods to be efficiently employed in classification problems. In CVC, training and test data are coclustered and class-cluster distributions are used to find the label of the test data. To determine an efficient number of clusters, a Semi-supervised Hierarchical Clustering (SHC) algorithm is proposed. ...

متن کامل

Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding

Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degreecorrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph ...

متن کامل

Probabilistic Path Queries in Networks Path: Efficient and Effective Clustering Methods

Correlations may exist among adjacent edges in various probabilistic graphs. As one of the basic mining techniques, graph clustering is widely used in exploratory data analysis, such as data compression, information retrieval, image segmentation, etc. Graph clustering aims to divide data into clusters according to their similarities, and a number of algorithms have been proposed for clustering ...

متن کامل

Spectral Kernel Learning for Semi-Supervised Classification

Typical graph-theoretic approaches for semisupervised classification infer labels of unlabeled instances with the help of graph Laplacians. Founded on the spectral decomposition of the graph Laplacian, this paper learns a kernel matrix via minimizing the leave-one-out classification error on the labeled instances. To this end, an efficient algorithm is presented based on linear programming, res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2017